协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差,在FRM考试中,协方差的公式是什么?

>>>点击领取2020FRM备考资料大礼包(戳我免·费领取)

2020FRM备考资料大礼包

协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。

如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。【资料下载】点击下载FRM二级思维导图PDF版

在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。

期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:

从直观上来看,协方差表示的是两个变量总体误差的期望。

2021年FRM智课五大升级邀您体验

点击链接预约名额

https://jinshuju.net/f/mEdCAI

扫码预约名额

扫码预约名额

如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。

但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。

协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。

协方差为0的两个随机变量称为是不相关的。

frm一级题库

协方差矩阵

分别为m与n个标量元素的列向量随机变量X与Y,这两个变量之间的协方差定义为m×n矩阵.其中X包含变量X1.X2......Xm,Y包含变量Y1.Y2......Yn,假设X1的期望值为μ1,Y2的期望值为v2,那么在协方差矩阵中(1,2)的元素就是X1和Y2的协方差。

两个向量变量的协方差Cov(X,Y)与Cov(Y,X)互为转置矩阵。

协方差有时也称为是两个随机变量之间“线性独立性”的度量,但是这个含义与线性代数中严格的线性独立性不同。