Python作为一门高ji语言是很好用的,语法简单,通俗易懂,非chang容易上手,丰富的第三方库支持使得开发速度快,相对于其他编程语言来说,初学者入门并不困难。它只是一门语言工具,zui终还是要将这门工具应用到一个领域中。Python的存在就是为了帮助我们快速解决实际问题,对于使用Python进行股票的金融数据量化分析是如何做的呢?接下来一起来看看吧!

量化交易属于人工智能的一个应用分支,它利用计算机强大运算能力,用数学模型来模仿人的思维作出决策,通过数据建模、统计学分析、程序设计等工具从股票、债券、期货的历史数据分析中得到大概率下获利的交易策略。

一、股票基础知识及涨跌逻辑

股票是股份公司发行的所有权凭证,是股份公司为筹集资金而发行给各个股东作为持股凭证并借以取得股息和红利的一种有价证券。每股股票都代表股东对企业拥有一个基本单位的所有权。

股票发行是在一级市场进行的,投资者买卖交易的是二级市场,也称股票交易市场,它是投资者之间买卖已发行股票的场所。二级市场为股票创造流动性,能够迅速脱手换取现值。因为能赚钱,所以这也是投资者热衷于分析股票涨跌的原因。

关于股票涨跌的因素,其实驱动股票涨跌的因素无外乎这五个方面:公司自身的发展、市场估值变化、宏观经济前景、行业发展环境、政治上的变化。

Python

二、如何用Python获取股票数据

既然是金融数据的分析,那么*步获取数据很重要。目前,获取股票数据的渠道有很多,而且基本上是免费的。获取到大量的股票数据,可以用数据库来高效地管理。目前流行的数据库有很多,关于数据库的选型通常取决于性能、数据完整性以及应用方面的需求。

如果我们仅仅是用于本地的数据管理,无需多用户访问,数据容量小于2T,无需海量数据处理,关键是要求移植方便、使用简单、处理迅速的话, SQLite确实是个很不错的选择。

Python 2.5.x 以上版本默认内置SQLite3,无需单独安装和配置,直接使用就行。建立了本地SQLite数据库,可以进一步查询和操作。比如查询股价日涨幅超过5%的个股在19年1月至2月的分布。如下所示:

除了获取行情数据,我们也需要寻找宏观经济、行业、公司相关的信息,这些信息是驱动股票涨跌的因素。关于这些信息,我们可以通过爬虫的方式去各大网站和论坛获取。